MECÂNICA GRACELI GENERALIZADA - QUÂNTICA TENSORIAL DIMENSIONAL RELATIVISTA DE CAMPOS.
DE ANCELMO LUIZ GRACELI [BRASILEIRO].
FÍSICA GRACELI DIMENSIONAL.
MECÃNICA GRACELI GERAL - QTDRC.
equação Graceli dimensional relativista tensorial quântica de campos G* = = [ / IFF ] * * = / G / .= / [DR] = = .= + G+ * * = = [ ] ω , , / T] / c [ [x,t] ] = |
//////
Teoria | Interação | mediador | Magnitude relativa | Comportamento | Faixa |
---|---|---|---|---|---|
Cromodinâmica | Força nuclear forte | Glúon | 1041 | 1/r7 | 1,4 × 10-15 m |
Eletrodinâmica | Força eletromagnética | Fóton | 1039 | 1/r2 | infinito |
Flavordinâmica | Força nuclear fraca | Bósons W e Z | 1029 | 1/r5 até 1/r7 | 10-18 m |
Geometrodinâmica | Força gravitacional | gráviton | 10 | 1/r2 | infinito |
G* = OPERADOR DE DIMENSÕES DE GRACELI.
DIMENSÕES DE GRACELI SÃO TODA FORMA DE TENSORES, ESTRUTURAS, ENERGIAS, ACOPLAMENTOS, , INTERAÇÕES DE CAMPOS E ENERGIAS, DISTRIBUIÇÕES ELETRÔNICAS, ESTADOS FÍSICOS, ESTADOS QUÂNTICOS, ESTADOS FÍSICOS DE ENERGIAS DE GRACELI, E OUTROS.
*= DIMENSÕES DE GRACELI = ESTADOS FÍSICOS, TIPOS E CARACTERITÍCAS, E POTENCIAIS FÍSICOS DAS ESTRUTURAS, DOS ELEMENTOS QUÍMICOS, ENERGIAS E NÍVEIS DE ENERGIAS, POTENCIAIS DE INTERAÇÕES , CONDUÇÕES, EMISSÕES, DESINTEGRAÇÕES, ABSORÇÕES, E OUTROS.
* *= = [ ] ω , , .=
MECÂNICA GRACELI GENERALIZADA - QUÂNTICA TENSORIAL DIMENSIONAL RELATIVISTA DE INTERAÇÕES DE CAMPOS. EM ;
MECÂNICA GRACELI REPRESENTADA POR TRANSFORMADA.
dd = dd [G] = DERIVADA DE DIMENSÕES DE GRACELI.
- [ G* /. ] [ [
G { f [dd]} ´[d] G* . / f [d] G* dd [G]
O ESTADO QUÂNTICO DE GRACELI
- [ G* /. ] [ [ ]
G* = DIMENSÕES DE GRACELI TAMBÉM ESTÁ RELACIONADO COM INTERAÇÕES DE ENERGIAS, QUÂNTICAS, RELATIVÍSTICAS, , E INTERAÇÕES DE CAMPOS.
o tensor energia-momento é aquele de um campo eletromagnético,
= temperatura.
* * ψ [* * ψ * / [ .] / ] / .=
* * ψ [ / * [ ] / / ] / * ψ .=
A Lei de Planck para radiação de corpo negro exprime a radiância espectral em função da frequência e da temperatura do corpo negro.
A tabela seguinte descreve as variáveis e unidades utilizadas:
Variável Descrição Unidade radiância espectral J•s−1•m−2•sr−1•Hz−1 frequência hertz temperatura do corpo negro kelvin constante de Planck joule / hertz velocidade da luz no vácuo metros / segundo número de Euler sem dimensão constante de Boltzmann joule / kelvin
O está relacionado a frequência como (supondo propagação de uma onda no vácuo):
Pode-se escrever a Lei de Planck em termos de energia espectral:
A energia espectral também pode ser expressa como função do comprimento de onda:
Max Planck produziu esta lei em 1900 e a publicou em 1901, na tentativa de melhorar a expressão proposta por Wilhelm Wien que adequou dados experimentais para comprimentos de onda curtos desviados para comprimentos de onda maiores. Ele estabeleceu que a Lei de Planck adequava-se para todos os comprimentos de onda extraordinariamente bem. Ao deduzir esta lei, ele considerou a possibilidade da distribuição de energia eletromagnética sobre os diferentes modos de oscilação de carga na matéria. A Lei de Planck nasceu quando ele assumiu que a energia destas oscilações foi limitada para múltiplos inteiros da energia fundamental E, proporcional à frequência de oscilação [1]:
.
Planck acreditava que a quantização aplicava-se apenas a pequenas oscilações em paredes com cavidades (que hoje conhecemos como átomos), e não assumindo as propriedades de propagação da Luz em pacotes discretos de energia. Além disto, Planck não atribuiu nenhum significado físico a esta suposição, mas não acreditava que fosse apenas um resultado que possibilitou uma expressão para o espectro emitido pelo corpo negro a partir de dados experimentais dos comprimentos de onda. Com isto Planck pôde resolver o problema da catástrofe do encontrada por Rayleigh e Jeans que fazia a radiância espectral tender ao infinito quando o comprimento de onda aproximava-se de zero, o que experimentalmente não é observado. É importante observar também que para a região do visível a fórmula de Planck pode ser aplicada pela aproximação de Wien e da mesma forma para temperaturas maiores e maiores comprimentos de onda podemos ter também a aproximação dada por Rayleigh e Jeans.
Em física, a lei de Rayleigh-Jeans, primeiramente proposta no início do século XX, com o objetivo de descrever a radiação espectral da radiação eletromagnética de todos os comprimentos de onda desde um corpo negro a uma temperatura dada. Expressa a densidade de energia de um radiação de corpo negro de comprimento de onda λ como[1]
também sendo escrita na forma
onde λ está em metros, c é a velocidade da luz, T é a temperatura em Kelvins, e k é a constante de Boltzmann.
A lei é derivada de argumentos da física clássica. Lord Rayleigh obteve pela primeira vez o quarto grau da dependência do comprimento de onda em 1900; uma derivação mais completa, a qual incluía uma constante de proporcionalidade, foi apresentada por Rayleigh e Sir James Jeans em 1905. Esta agregava umas medidas experimentais para comprimentos de onda. Entretanto, esta predizia uma produção de energia que tendia ao infinito já que o comprimento de onda se fazia cada vez menor. Esta ideia não se sustentava pelos experimentos e a falta se conheceu como a "catástrofe ultravioleta"; entretanto, não foi, como as vezes se afirma nos livros-texto de física, uma motivação para a teoria quântica.
A lei concorda com medições experimentais para grandes comprimentos de onda mas discorda para comprimentos de onda pequenos.
Em 1900 Max Planck revisou a lei, obtendo uma lei um tanto diferente, a qual estabeleceu:
que pode ser escrita também na forma
onde h é a constante de Planck e c é a velocidade da luz. Esta é a Lei de Planck expressa em termos de comprimento de onda λ = c /ν. A lei de Planck não sofre de uma "catástrofe ultravioleta", e assim de acordo com os dados experimentais, mas seu pleno significado só se apreciaria vários anos mais tarde. No limite de temperaturas muito altas ou grandes comprimentos de onda, no termo exponencial se converte no pequeno, pelo que o denominador se converte em aproximadamente hc / kT λ série de potências de expansão. Isto lhe dá o nome de Lei de Rayleigh-Jeans.
A fórmula
[editar | editar código-fonte]Primeira tentativa de calcular a densidade de energia dentro da caixa, derivada do teorema da equipartição termodinâmica, usando a lei de distribuição de modo normal obtida do eletromagnetismo clássico multiplicada pela energia média dos modos vibracionais:[2]
As duas teorias utilizadas, eletromagnetismo e termodinâmica estatística, foram amplamente testadas e amplamente aceitas na física da época. Jeans mais tarde fez uma pequena correção relacionada ao fator 8, que foi causado por um erro no cálculo de Rayleigh do número de estados.
A lei de distribuição resultante passou a ser chamada de distribuição Rayleigh-Jeans.
Embora a distribuição obtida utilize uma teoria bem testada e completamente confiável, seus resultados são corretos apenas na faixa de baixas frequências.
Para o limite oposto, a distribuição Rayleigh-Jeans apresenta resultados completamente inconsistentes, produzindo densidade de energia e, portanto, emissividade espectral divergente com frequência crescente.
O número de modos de vibração eletromagnética no interior de uma caixa quadrada com dimensões iguais a , no intervalo de frequências entre e e , é dado por .
Nesta equação, deve-se notar que a existência de volume é expressa como o cubo da caixa tamanho l.
O número de estados eletromagnéticos depende dessa quantidade, embora a densidade de estados, formalmente o número de estados dividido pelo volume, não seja.
A energia média de cada modo vibracional eletromagnético é dada pelo teorema da equipartição, que é o resultado da seguinte integração, assumindo equilíbrio térmico e um contínuo de valores possíveis para a energia:
A equação apresenta bom comportamento, reproduzindo qualitativa e quantitativamente os resultados experimentais na região de baixa frequência. No entanto, na região de alta frequência, a equação produz resultados absurdos, sugerindo uma contradição teórica, pois nessa região a densidade de energia é assintoticamente infinita.
O resultado, conhecido como catástrofe do ultravioleta, sugere que uma das teorias usadas para desenvolver a equação, é conhecida como eletromagnetismo ou teorema da equipartição.[necessário esclarecer]
Descrição clássica
Como exemplo mais simples de um corpo radiante, tem-se o oscilador harmônico linear de frequência própria .[3]
Para este oscilador, pode-se determinar a energia radiada por segundo; sendo esta radiação equivalente à radiação emitida por um dipolo oscilante a qual é dada pela equação:
onde é a energia média dos osciladores. Pela lei de equipartição de energia, é possível chegar a este valor de energia, dado na equação:
onde é a constante de Boltzmann e é a temperatura. Substituindo o valor de na equação de , obtém-se:
Entretanto, por essa lei, o aumento da frequência implica em aumento da energia radiante até que lim ν → ∞ ⇒ μν → ∞. Esta incoerência ficou conhecida como catástrofe do ultravioleta.
Comentários
Enviar um comentário